SAVITRIBAI PHULE PUNE UNIVERSITY

Progressive Education Society's

Modern College of Arts, Science and Commerce, Ganeshkhind, Pune-411016

B.Sc. Blended Program

(A degree of Savitribai Phule Pune University equivalent to the degree of University of Melbourne)

End Semester Examination: January 2023

Program: B.Sc. Blended Program (Specific): B.Sc. Blended (Chemistry) Set: A

Class: S.Y.B.Sc. Blended Semester: III

Course code: PHY302

Course name: Quantum mechanics and Thermodynamics

Credits: 3 Time: 2½ hours Maximum marks: 50

Instructions to the candidate:

- All questions are compulsory.
- Figures to the right indicate marks.
- Draw diagrams wherever necessary.
- Use of scientific calculator is allowed.
- Ask for graph paper if needed.
- Q.1] Choose the correct option (Solve ANY 10 out of 12)

 $[1 \times 10 = 10M]$

- 1. The photoelectric effect could be explained by the -----
 - a. wave nature of light
 - b. particle nature of light
 - c. dual nature of light
 - d. none of these
- 2. ----- is the energy required to remove the electrons from the metal surface.
 - a. Work function
 - b. Kinetic energy
 - c. Stopping potential
 - d. Potential energy
- 3. ∇ . J + $\frac{\partial \rho}{\partial t}$ = 0 is the mathematical form of ----
 - a. equation of continuity
 - b. probability of current density

(Heisenberg's uncertainty principleSchrödinger's equation
a t	are of magnitude of the wave function $ \varphi ^2$ is called
a t	t will be the eigen value for the operator $\frac{d^2}{dx^2}$ for the eigen function e^{4x} at 4 of 2 et 8 d. 16
a t	total probability of finding the particle in the entire space must be i. zero i. unity i. infinity i. double
8. The g	g. provides relationship between heat, work and internal energy a. all of the above round state energy of particle in one dimensional infinite potential well is 1. $\frac{\pi^2 \mathfrak{h}^2}{2 \mathfrak{m} a^2}$ 2. $\frac{2\pi^2 \mathfrak{h}^2}{2 \mathfrak{m} a^2}$ 3. $\frac{2\pi^2 \mathfrak{h}^2}{3\pi^2 \mathfrak{h}^2}$
a t	first permitted energy level or ground state energy level is also called as excited energy zero-point energy kinetic energy none of these

- 10. The wave function φ must be ----
 - a. continuous everywhere
 - b. discontinuous everywhere
 - c. infinite everywhere
 - d. none of these
- 11. Carnot cycle has maximum efficiency for
 - a. reversible engine
 - b. irreversible engine
 - c. diesel engine
 - d. petrol engine
- 12. The efficiency of a Carnot engine depends on
 - a. working substance
 - b. design of engine
 - c. size of engine
 - d. temperatures of source and sink

Q.2] Answer the following in short (ANY 10 out of 12)

 $[2 \times 10 = 20M]$

- 1. Write Schrödinger's time independent equation and explain physical significance.
- 2. State Kirchhoff's law of radiation.
- 3. State two phenomena where classical physics fails to explain the phenomena.
- 4. What is wave packet?
- 5. Define eigen function and eigen value.
- 6. Give the requirement of wave function.
- 7. What is momentum of gamma radiation having a wavelength 1A⁰
- 8. Calculate the wavelength associated with a particle moving of momentum $6.625 \times 10^{-3} \text{ kg-m/sec}$ (Given- $h = 6.625 \times 10^{-34} \text{ j-sec}$)
- 9. What is heat engine? Draw schematic diagram for heat engine.
- 10. Compare Diesel engine and Otto engine.
- 11. If the compression ratio for Otto engine is 9 and ratio of principal specific heats Cp/Cv is 1.4, find the efficiency of the engine.
- 12. The efficiency of Otto engine is 50%. If value of γ for the working substance is 1.5, find the compression ratio.

Q.3. Answer in brief (ANY 4 out of 6)

 $[4 \times 5 = 20M]$

- 1. Define operator. State quantum mechanical operator.
- 2. Define expectation value. Write mathematical expression for position and momentum.
- 3. Normalize the wave function of the free particle in the range $-\infty$ to $+\infty$ is given by $\varphi(X) = A e^{-\alpha x^2/2}$
- 4. Explain Otto Cycle in brief with Indicator diagram.
- 5. Carnot's engine, whose low temperature reservoir is at 10°C, has an efficiency of 50%. It is desired to increase the efficiency to 70%. By how many degrees should the temperature of the high temperature reservoir be increased?
- 6. Derive relation for efficiency of Carnot's Engine.

